Introduction

This chapter explains how to make the wiring connections for the power meter.

Required Protection for CE Compliance

For CE compliance, use a CE-compliant protection device such as a Merlin Gerin Disconnect Circuit Breaker Type P25M #21104 (or IEC 947 equivalent), which must be connected directly to the metering voltage and control power inputs.

NOTE: The disconnect circuit breaker must be placed within reach of the power meter and labeled: **Disconnect Circuit Breaker for Power Meter**.

Supported System Types

Table 4–1: Voltages Less Than or Equal to 347Vac L-N, Direct Connect No PTs

Single-Phase Wiring								
Number of	CTs		Voltage Connections			Meter Configuration		
Wires	Qty.	ID	Qty.	ID	Туре	System Type	PT Priority Scale	
2	1	l1	2	V1, Vn	L-N	10	No PT	
2	1	11	2	V1, V2	L-L	11	No PT	
3	2	I1, I3	3	V1, V2,Vn	L-L with N	12	No PT	
Three-Phase Wiring								
3	2	l1, l2	3	V1, V2, V3	Delta	30	No PT	
	3	11, 12, 13	3	V1, V2, V3	Delta	31	No PT	
4	3	11, 12, 13	3	V1, V2, V3, Vn	High Leg Delta	40	No PT	
4	3	11, 12, 13	3	V1, V2, V3, Vn	Wye	40	No PT	

Table 4–2: Voltages Greater Than 347 Vac L-N/600 Vac L-L

Three-Phase Wiring							
Number of Wires	CTs		Voltage Connections			Meter Configuration	
	Qty.	ID	Qty.	ID	Туре	System Type	PT Priority Scale
3	2	l1, l3	2	V1, V3 (V2, Vn to Ground)	Open Delta	30	Based on voltage
	3	11, 12, 13	2	V1, V3 (V2, Vn to Ground)	Open Delta	31	Based on voltage
4	3	11, 12, 13	3	V1, V2, V3, (Vn to Ground)	Grounded Wye	40	Based on voltage
	3	11, 12, 13	2	V1, V3 (Vn to Ground)	Open Wye	42	Based on voltage

Wiring Diagrams

A DANGER

HAZARD OF ELECTRIC SHOCK, BURN, OR EXPLOSION

- Only qualified workers should install and wire the power meter. Perform this work only after completely reading the installation and wiring chapters.
- Turn off all power supplying the power meter and the equipment in which it is installed before working on it.
- Use a properly rated voltage testing device to verify that the power is off.

Failure to follow these instructions will result in death or serious injury.

4

secondaries, use system type 3Ø3W2CT.

- Control power can be drawn from fused voltage inputs Phase-Phase or an external source.
- For corner grounded delta applications, use PTs.
- Use system type 3Ø3W2CT.

1-Phase Line-to-Line 2-Wire System 1 CT

NOTE: The voltage input protection must be rated for the short circuit current at the connection points.

Merlin Gerin Square D

10 V3 11 VN

12 **I**1+

13 I1-14 I2+ 15 I2-16 I3+

17 3-

PM800

Direct Connect Control Power (Phase to Neutral)

Phase to Neutral

Table 4–3: Fuse Recommendation

Direct Connect Control Power (Control Power

Control Power Source	Source Voltage (V _S)	Fuse	Fuse Amperage
CPT	V _S ≤125 V	FNM or MDL	250 mA
CPT	$125 < V_{S} \le 240 V$	FNQ or FNQ-R	250 mA
CPT	240 < V _S ≤305 V	FNQ or FNQ-R	250 mA
Line Voltage	$V_{S} \le 240 V$	FNQ-R	250 mA
Line Voltage	V _S > 240 V	FNQ-R	250 mA
DC	$V_{\rm S} > 300 \ V$	LP-CC	500 mA

Communications Capabilities

Table 5–1: Communications Capabilities of the Power Meter

Communications Port	RS-485:		
	 2-wire with shield EIA compliant Allows the power meter to be connected to a daisy-chain of up to 32 devices 		
Baud Rate	9600		
	19200		
	38400		
Communications Distances	See Table 5–2 on page 21		
Protocols	MODBUS RTU		
	JBUS		
Parity	ODD		
	EVEN		
	NONE		

Table 5–2: RS-485 Communications Distances

	Maximum Communication Distances					
Baud Rate	1 to 16	Devices	17 to 32 Devices			
	Feet	Meters	Feet	Meters		
9600	10,000	3,050	4,000	1,220		
19200	5,000	1548	2,500	762.5		
38400	2,500	762.5	1,500	457		

NOTES:

• Distances are for 2-wire devices and 4-wire devices configured for 2-wire operation, such as the Series 600 Power Meter and the Series 3000 and 4000 Circuit Monitor.

• Distances listed should be used as a guide only and cannot be guaranteed for non-POWERLOGIC devices.

Communications

Connecting to a PC Host Using the RS-485 Port

HAZARD OF ELECTRIC SHOCK, BURN, OR EXPLOSION

- Turn off all power supplying the power meter and the equipment in which it is installed before working on it.
- Use a properly rated voltage testing device to verify that the power is off.

Failure to follow this instruction will result in death or serious injury

Connecting to a PC Host Using the RS-485 Port

The RS-485 slave port allows the power meter to be connected to a daisy-chain of up to 31 devices to the serial communications port on a host device (see Figure 5–1). Refer to Table 5–2 on page 21 for cable distance limitations at varying baud rates. To make this type of connection, you must use a RS-232-to-RS-422/RS-485 converter. POWERLOGIC offers a converter kit for this purpose (part number MCI-101). For connection instructions, refer to the instruction bulletin included with the MCI-101 kit.

Figure 5–1: Power meters connected to a PC serial port through the RS-485 port on the power meter

Merlín Gerín Square D

Daisy-chaining Devices to the Power Meter

The RS-485 slave port allows the power meter to be connected in a daisy chain with up to 31, 2-wire devices. In this bulletin, communications link refers to a chain of devices that are connected by a communications cable.

To daisy-chain devices to the power meter, use communications cable containing a twisted-shielded pair (Belden 9841 or equivalent) and the threeterminal connector of the RS-485 port on the power meter. The terminals are labeled:

To connect to the power meter, follow these steps:

- 1. Strip the cable wires and insert them into the holes in the connector.
- 2. On the top of the connector, torque the wire binding screws 5–7 in-lb (0.56–0.79 №m).

Figure 5–2: RS-485 connection

Daisy-chain 2-wire Devices

To daisy-chain the power meter to another 2-wire POWERLOGIC device, wire the power meter's RS-485 communications terminals to the matching communications terminals of the next device. In other words, wire the + terminal of the power meter to the + terminal of the next device, wire – to –, and shield to shield as shown in Figure 5–3. Daisy-chaining Devices to the Power Meter

- If the power meter is the first device on the daisy chain, connect it to the host device using the MCI-101 kit (or equivalent RS-232 to RS-422/RS-485 converter). See "Connecting the First Device on the Daisy Chain" on page 26 in this chapter for instructions.
- If the power meter is the last device on the daisy chain, terminate it. See "Terminating the Communications Link" on page 27 in this chapter for instructions.
- See Table 5–2 on page 21 for the maximum daisy-chain communications distances for 2-wire devices.

Using the MCT2W-485 Terminator

To terminate the power meter using the MCT2WMCTAS-485 terminator (part no. 3090MCTAS485), insert the wires of the terminator directly into terminals 19 and 20 of the RS-485 communications connector on the power meter as shown in Figure 5–3.